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Abstract

Rainfall erosivity is a major causal factor of soil erosion, and it is included in many pre-
diction models. Maps of rainfall erosivity indices are required for assessing soil erosion
at the regional scale. In this study a comparison is made between several techniques
for mapping the rainfall erosivity indices: i) the RUSLE R factor and ii) the average EI305

index of the erosive events over the Ebro basin (NE Spain). A spatially dense pre-
cipitation data base with a high temporal resolution (15 min) has been used. Global,
local and geostatistical interpolation techniques were employed to produce maps of
the rainfall erosivity indices, as well as mixed methods (regression plus local interpola-
tion). To determine the reliability of the maps several goodness-of-fit and error statistics10

were computed, using a cross-validation scheme. All methods represented correctly
the spatial patterns of both erosivity indices, but the mixed approaches tended to be
better overall considering the validation statistics. Additionally, they allowed identifying
statistically significant relationships between rainfall erosivity and other geographical
variables, as elevation and distance to the water bodies. All models had a relatively15

high uncertainty, caused by the high variability of rainfall erosivity indices both in time
and space, what stresses the importance of using the longest data series available
with a good spatial coverage.

1 Introduction

Soil erosion has become a major environmental threat due to the growth of the World’s20

population, and is one of the main consequences of projected land use and climate
change scenarios (Gobin et al., 2004). Studies on soil erosion started in the first
decades of the 20th Century, and have increased in number and variety since then.
Isolating the role of different natural and management factors on soil erosion has been
one of the major research topics. The combination of those factors in the form of25

a parametric model allowed the development of tools such as the USLE (Wischmeier
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and Smith, 1978; Kinnell and Risse, 1998), which can be used for predicting the effect
of different management strategies on soil erosion rates. The development of paramet-
ric models opened a new area of research, devoted to analyze the spatial variability of
erosion causal factors. Maps showing the spatial distribution of natural and manage-
ment related erosion factors are of great value in the early stages of land management5

plans, allowing identify preferential areas where action against soil erosion is more
urgent or where the remediation effort will have highest revenue. With the advent of
Geographic Information Systems (GIS), studies of this kind have become more and
more frequent.

Among the natural factors affecting soil erosion, rainfall erosivity has a paramount10

importance. Precipitation is a major cause of soil erosion, given the extraordinary im-
portance of soil detachment processes due to drop impact and runoff shear. Compared
to other natural factors such as the relief or the soil characteristics, rainfall erosivity has
very little or null possibility of modification by humans, so it represents a natural en-
vironmental constrain that limits and conditions land use and management. In the15

context of climate change, the effect of altered rainfall characteristics on soil erosion is
one of the main concerns of soil conservation studies.

It is well known that a few, very intense rainfall events are responsible for the largest
part of the soil erosion and sediment delivery (González-Hidalgo et al., 2007). Hence,
the estimation of rainfall erosivity may contribute to a better prediction of soil erosion.20

Rainfall erosivity can be quantified by several erosivity indices which evaluate the rela-
tionship between drop size distribution and kinetic energy of a given storm. Numerous
works have assessed the role of drop size distribution of both natural and simulated
rainfall at the field plot scale on soil detachment. These measurements are difficult to
perform, and because of that they are very rare both in space and time. In addition,25

natural rainfall properties measurements are scarce for comparisons with simulated
rain (Dunkerley, 2008). This has motivated researchers to undertake studies relating
more conventional rainfall characteristics such as the maximum intensity during a pe-
riod of time to rainfall energy or directly to soil detachment rates. Examples of such
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indices of rainfall erosivity are the USLE R factor, or the EI30 index (Wischmeier, 1959;
Wischmeier and Smith, 1978; Brown and Foster, 1987; Renard and Freimund, 1994;
Renard et al., 1997), the modified Fournier index for Morocco (Arnoldus, 1977), the
KE>25 index for southern Africa (Hudson, 1971) and the AIm index for Nigeria (Lal,
1976).5

Mapping rainfall erosivity at regional and basin scale is still an emerging research
question. Such maps allow for a better comprehension of the processes with geo-
graphical imprint as well as the application of these methodologies to large spatial
areas. They are also an important step for large-scale soil erosion assessments, soil
conservation management of natural resources, agronomy and agrochemical expo-10

sure risk assessments (Winchell et al., 2008). Early examples are the rainfall erosivity
maps for the whole USA in the form of isoerodent maps or maps of the RUSLE R factor
(Renard and Freimund, 1994). Other researchers have used regression techniques to
elaborate spatially continuous maps of rainfall erosivity on the basis of other available
data such as daily and monthly records of rainfall depth (ICONA, 1988).15

With the advent of GIS packages and the generalization of spatial interpolation tech-
niques, maps of environmental parameters such as those relevant for soil erosion have
become frequent. For example, several authors have used GIS techniques to map
the factors of the RUSLE equation by means of interpolation methods (Shi, 2004; Lim,
2005; Mutua, 2006; López-Vicente et al., 2008). There are a number of statistical20

methods available, such as regression models; local interpolators such as the inverse
distance weighted (IDW) or thin-plate splines, or geostatistical techniques such as krig-
ing (Burrough and McDonnell, 1998). Recent studies, mostly in the field of Climatology
(e.g., Ninyerola and Pons, 2000; Vicente-Serrano et al., 2003; Begueŕıa and Vicente-
Serrano, 2006), highlighted the interest of finding the method with the best adjustment25

to the observed data.
There are few studies comparing between interpolation techniques for rainfall ero-

sivity indices. Millward (1999) calculated the EI30 index at the monthly scale and the
R factor with geostatistics and IDW techniques for the Algarve region (Southern Por-
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tugal). Hoyos (2005) observed that a local polynomial algorithm gave lower mean
prediction errors than the IDW in the Colombian Andes. Goovaerts (1999) discussed
the relation between rainfall erosivity and elevation in the comparison of three different
geostatistical methods. None of these works provided a comprehensive comparison of
mapping methods at the regional scale.5

This work aims at comparing different interpolation methods to map the average
EI30 index of the erosive events and the RUSLE R factor in a large and climatologically
complex area: the Ebro basin, in north-eastern Spain. Results of rainfall erosivity
cartography can be used as a reference for soil protection practices and discussion
of the different interpolation methods will be of interest to enhance regional and basin10

cartography.

2 Materials and methods

2.1 Study area

The study area covers the north-east of Spain (Fig. 1). It corresponds to the Ebro
Basin, which represents an area of about 85 000 km2. The Ebro valley is an inner15

depression surrounded by high mountain ranges. It is limited to the North by the
Cantabrian Range and the Pyrenees, with maximum elevations above 3000 m a.s.l.
The Iberian range closes the Ebro valley to the South, with maximum elevations in the
range of the 2000–2300 m. To the East, parallel to the Mediterranean coast, the Cata-
lan Coastal Range closes the Ebro valley, with maximum elevations between 1000 and20

1200 m a.s.l.
The climate is influenced by the Cantabric and Mediterranean Seas and the effect

of the relief on precipitation and temperature. The border mountain ranges isolate the
central valley blocking the maritime influence, resulting in a continental climate which
experiments aridity conditions (Cuadrat, 1991; Lana and Burgueño, 1998; Creus 2001;25

Vicente-Serrano, 2005). A climatic gradient in the NW-SE direction is remarkable,
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determined by the strong Atlantic influences in the north and north-west of the area
during large part of the year and the Mediterranean influence to the east. Mountain
ranges add complexity to the climate of the region. The Pyrenees extend the Atlantic
influence to the east by increasing precipitation, whereas the Cantabrian Range, which
runs parallel to the Atlantic coastland in the NW, is a barrier to the humid flows and has5

a noticeable climate contrast between the north (humid) and the south (dry) slopes.
The precipitation regime shows strong seasonality (Garrido and Garcı́a, 1992), which

involves not only the amount of precipitation but also its physical cause (frontal or
convective). Precipitation in the inland areas is characterised by alternating wet and
dry periods as a consequence of the seasonal displacement of the polar front and its10

associated pressure systems. Inter-annual variability of precipitation can be very high,
and drought years can be followed by torrential rain events which last for many days
(Mart́ın-Vide, 1994).

Close to the Mediterranean Sea the precipitation amount also increases as a conse-
quence of the maritime influence. Nevertheless, the precipitation frequency, intensity15

and seasonality are very different compared to the areas in the North, where pre-
cipitation is frequent but rarely very intense, with the exception of mountainous ar-
eas (Garcı́a-Ruiz et al., 2000). The most extreme precipitation events are recorded
along the Mediterranean seaside (Llasat, 2001; Romero et al., 1998; Peñarrocha et
al., 2002). The Ebro Basin has a long record of social, economic and environmental20

damages caused by extreme rainfall events (Garcı́a-Ruiz et al., 2000; Lasanta, 2003)
due to its complex climatology, as a meteorological border region, and the contrasted
relief.

2.2 Data base

The database consisted on 112 selected rainfall series from the Ebro Hydrographi-25

cal Confederation SAIH system–Automatic Hydrological Information Network (Fig. 1).
Each station provides precipitation data at a time resolution of 15 min. The system
started on 1997, and is the only dense network providing sub-daily resolution data in
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the region. We used all available series data for the period 01 January 1997 to 31
December 2006.

The rainfall series were subjected to a quality control that allowed identifying wrong
records due to system failures. These records were replaced by the corresponding
ones from a nearby station. This allowed creating an erosive events database (EEDB).5

The erosive events were determined by the RUSLE criterion: an event is considered
erosive if at least one of this conditions is true: i) the cumulative rainfall is greater than
12.7 mm, or ii) the cumulative rainfall has at least one peak greater than 6.35 mm in
15 min. Two consecutive events are considered different from each other if the cumu-
lative rainfall in a period of 6 h is greater than 1.27 mm.10

2.3 Rainfall erosivity index

The rainfall erosivity indices employed were the average EI30 index events and the
RUSLE R factor. These indices have been widely used, making it possible to com-
pare the results with those of other studies. The RUSLE model uses the Brown
and Foster (1987) approach for calculating the average annual rainfall erosivity, R15

(MJ mm ha−1 h−1 y−1):

R =
1
n

n∑
j=1

mj∑
k=1

(EI30)k (1)

where n is the number of years of record, mj is the number of erosive events of a given
year j , and EI30 is the rainfall erosivity index of a singular event k. Thus, the R factor
is the average value of the annual cumulative EI30 over a given period. The event’s20

rainfall erosivity EI30 (MJ mm ha−1 h−1) is obtained after dividing the event into o slices
of 15 min as follows:

(EI30)k =

(
o∑
r=1

ervr

)
I30 (2)
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where er and vr are, respectively, the unit rainfall energy (MJ ha−1 mm−1) and the rain-
fall volume (mm) during a time slice r , and I30 is the maximum rainfall intensity during
a period of 30 min in the event (mm h−1). The unit rainfall energy, er , is calculated for
each time slice as:

er = 0.29[1 − 0.72 exp(−0.05ir )] (3)5

where ir is the rainfall intensity during the time slice (mm h−1). In addition to the R fac-
tor, we also calculated the average EI30 of the erosive events over the study period.
The average EI30 complements the information given by the R factor, since it is more
influenced by the events with highest erosivity than R.

2.4 Spatial modelling10

In many studies the rainfall erosivity calculation is reduced to at-site analysis. An im-
provement focus on the reduction of the risk of erosion in landscape management and
conservation planning is to obtain continuous maps for large areas as a preliminary
step to evaluate the hazard. For this purpose a common procedure is the mapping
of at-site estimated rainfall erosivity index values by means of interpolation techniques15

(e.g., Prudhome and Reed, 1999; Weisse and Bois, 2002).
In this article several interpolation methods including global, local and mixed ap-

proaches, are compared in order to determine which one describes better the spatial
distribution of the average EI30 index and the R factor. A leave-one-out cross-validation
technique was used for validating the goodness of fit (Efron and Tibshirani, 1997).20

For the regression-based models, a digital elevation model (DEM) and a digital cov-
erage of the Iberian Peninsula coastline were used. Both were obtained from the Ebro
Hydrographical Confederation (http://www.chebro.es/).
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2.4.1 Global methods

The global method used was a multiple regression model. Regression is a global
approach to spatial interpolation, and it is based on finding empirical relationships
between the variable of interest and other spatial variables. Regression-based tech-
niques adapt to almost any space and usually generate adequate maps (Goodale et5

al., 1998; Vogt et al., 1997; Ninyerola et al., 2000). The relationships between cli-
matic data and topographic and geographic variables have been extensively analyzed
throughout the scientific literature, and regression-based models allow exploiting this
relationship to produce maps of climatic parameters. Some authors have shown the
advantages of incorporating the information provided by ancillary data on mapping ex-10

treme rainfall probabilities (Begueŕıa and Vicente-Serrano, 2006; Casas et al., 2007).
Regression methods can be especially adequate in large regions with complex atmo-
spheric influences, such as the Ebro Valley (Daly et al., 2002; Weisse and Bois, 2002;
Vicente-Serrano et al., 2003), or if the sample network is not dense enough for local
interpolation methods (Dirks et al., 1998).15

Therefore, the average EI30 index and the R factor were estimated by:

z(x) = b0 +
n∑
1

bnPn(x) + ε(x) (4)

where z is the predicted value of the parameter at a given location x, b0 to bn are
regression coefficients, P1 to Pn are spatially distributed independent variables, and ε
is a normally distributed, random error.20

We used a set of independent variables at a spatial resolution of 100 m (Table 1). El-
evation is usually the main determinant of the spatial distribution of climatic variables.
Nevertheless, other variables such as the latitude and longitude, the distance to the
oceans or the incoming solar radiation may also have an influence on the distribution
of erosive rains. Most variables were derived from a DEM (UTM-30N coordinates), ex-25

cept the distance to the Cantabrian and Mediterranean seas which were obtained from
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the Iberian Peninsula coastline coverage. The incoming solar radiation is a spatially
continuous variable that depends on the terrain aspect (northern and southern slopes
have low and high incoming solar radiation values, respectively). The annual mean
incoming solar radiation was calculated following the algorithm of Pons and Ninyerola
(2008). All these variables were processed in the MiraMon GIS package (Pons, 2006).5

Low-pass filters with radii of 5, 10 and 25 km were applied to elevation, slope and
incoming solar radiation in order to measure the widest influence of these variables.

For the model selection (identification of the significant variables) we used a forward
stepwise method based on the Akaike’s Information Criterion (Venables and Ripley,
2002). A ten-fold cross-validation procedure was used, consisting in repeating the10

stepwise method ten times, each time leaving one tenth of the sample out of the anal-
ysis (Breiman and Spector, 1992). In an ideal case all ten repetitions should yield the
same set of significant variables, what is an indication of a reliable model. To avoid
excessive influence of outlier observations which were present in the data, a robust
regression procedure was used consisting in assigning a weight to each observation15

which was inversely proportional to its influence on the model fitting process (Marazzi,
1993). The R statistical analysis package (R Development Core Team, 2008) was used
for the regression analysis.

2.4.2 Local methods

In global methods, local variations are dismissed as random, unstructured noise, and20

the climatic map is created on the basis of general structure of the variable at all avail-
able points (Borrough and McDonnell, 1998). Local methods, on the contrary, use only
the data of the nearest sampling points for climatic mapping. Since interpolated values
at ungauged locations depend on the observed values, local methods strongly depend
on a sufficiently dense and evenly spaced sampling network.25

Two local methods were used: inverse distance weighting (IDW) and splines. The
IDW interpolation is based on the assumption that the climatic value at an unsampled
point z(x) is a distance-weighted average of the climatic values at nearby sampling
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points z(x1), z(x2), . . . , z(xn). Climatic values are more similar at closer distances, so
the inverse distance (1/di ) between z(xi ) and z(x) is used as the weighting factor:

z(x) =

∑n
i=1 z(xi )d

−r
ij∑n

i=1 d
−r
ij

(5)

where z(x) is the predicted value, z(xi ) is the climatic value at a neighbouring weather
station, di j is the distance between z(x) and z(xi ), and r is an empirical parameter.5

Models with r=1, r=2 and r=3 were tested.
The splines method is based on a family of continuous, regular and derivable

functions. Splines are similar to the equations obtained from the trend surfaces or
regression-based methods, but they are fitted locally from the neighbouring points
around the candidate location x. A new function is created for each location x, without10

lost of continuity properties among the curves. Smoothing or tension parameters can
be specified, resulting in more or less smoothed maps. The predicted value z(x) is
determined by two terms:

z(x) = T (x) +
n∑
i=1

λjψj (ri ) (6)

where T (x) is a polynomial smoothing term, and the second term groups a series15

of radial functions where ψj (ri ) is a known group of functions, and λj represents the
parameters (Mitasova et al., 1995):

ψ(ri ) = −
[

ln
(
ϕ × ri

2

)
+ Ei

(
ϕ × ri

2

)
+ CE

]
(7)

where ϕ is the tension coefficient, CE=0.577215. . . is the Euler constant, Ei is the
exponential integral function, and ri is:20

ri =
√

(x − xi )2 + (y − yi )2 (8)
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The algorithms for fitting splines are quite complex but are currently standard in GIS
packages. In this paper several spline interpolations were used as implemented in
the ArcGIS 9.2 software. Tension and smoothing parameters were ϕ=400, ϕ=5000,
T (x)=0 and T (x)=400.

Geostatistical interpolation methods (or kriging) assume that the spatial variation of5

a continuous climatic variable is too irregular to be modelled by a continuous mathe-
matical function, and its spatial variation could be better predicted by a probabilistic
surface. This continuous variable is called a regionalized variable, which consists of
a drift component and a random but spatially correlated component (Borrough and
McDonnell, 1998). The spatially located climatic variable z(x) is expressed by:10

z(x) = m(x) + ε′(x) + ε′′ (9)

where m(x) is the drift component that indicates the structural variation of the climatic
variable and ε′(x) are the residuals, the difference between the drift component and
the sampling data values. These residuals are spatially dependent, whereas ε′′(x) in-
dicates the spatially independent residual. The predictions of kriging-based methods15

are currently a weighted average of the data available at neighbouring weather sta-
tions. The weighting is chosen so that the calculation is not biased and the variance
is minimal. Initially, a function that relates the spatial variance of the climatic variable
must be determined using a semi-variogram model which relates the semi-variances
between the climatic values at different spatial distances.20

There are different types of kriging and several sources describe them in detail (see,
for example, Isaaks and Strivastava, 1989; Goovaerts, 1997; Borrough and McDonnell,
1998). In this paper the geostatistical methods used were simple kriging, ordinary krig-
ing, ordinary kriging with anisotropy and co-kriging, as implemented in the ArcGIS 9.2
software.25
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2.4.3 Mixed methods

Mixed methods are based on a combination of regression and local interpolation tech-
niques, exploiting the ability of regression to relate the target variable to other spatially
distributed variables and the spatial self-correlation acting at the local scale on most
spatial variables. Alternative forms of mixed methods have been proposed in the last5

years for mapping environmental variables (Brown and Comrie, 2002; McBratney et
al., 2003; Ninyerola et al., 2007; Vicente-Serrano et al., 2007). These and other stud-
ies have demonstrated that mixed methods usually allow for more precise and detailed
representations of the target variables.

In this study, the residuals ε in Eq. (4) were obtained after applying the regression10

model to the observed values, and values were then interpolated using a local method.
Inverse distance weighting with r=2, splines with tension with ϕ=400 and ordinary
kriging were used. The final prediction of the mixed model is the sum of the values
predicted by the regression model and the interpolated residuals.

2.5 Validation15

The resulting maps were compared by using a set of validation statistics comparing the
predicted and the observed values of the R factor and the EI30 index. A leave-one-out
procedure was used, consisting in fitting the model n−1 times – n being the number of
observations in the data set –, each time one observation is left out of the fitting sam-
ple. These observations are used to calculate the model residuals, i.e. the difference20

between the predicted and the observed values. Cross-validation techniques are pre-
ferred to more traditional split-sample procedures for estimating generalization error,
since they allow an independent validation without sacrificing an important amount of
data (Weiss and Kulikowski, 1991). Cross-validation is compulsory when comparing
exact interpolators such as IDW or splines, which by definition give an exact value at25

the locations for which there are observations, i.e. all residuals by these models are
zero.

429

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/6/417/2009/hessd-6-417-2009-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/6/417/2009/hessd-6-417-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
6, 417–453, 2009

Mapping rainfall
erosivity at a regional

scale

M. Angulo-Mart́ınez et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

We used a set of goodness of fit statistics not to rely on a single one (Table 2).
These include the coefficient of determination (r2) of the regression between the pre-
dicted and the observed values, as well as the intercept and slope parameters of the
regression line as an indicator of bias in the predictions. Two error statistics were also
computed: i) the mean bias error (MBE), which is centred around zero and is an indi-5

cator of prediction bias; and ii) the mean absolute error (MAE), which is a measure of
the average error. We avoided using the root mean square error (RMSE) because it is
highly biased by outlier observations, and also because it is difficult to discern whether
it reflects the average error or the variability of the squared errors (Willmott and Mat-
suura, 2005). Finally, we computed the agreement index D (Willmott, 1981), which10

scales the magnitude of the variables, retains mean information and does not amplify
the outliers.

3 Results

All interpolation methods were able to capture the regional distribution of the two rain-
fall erosivity parameters (Figs. 2 and 3). The R factor was highest – from 1200 to15

4500 MJ mm ha−1 h−1 y−1 – in two areas: i) in the Pyrenees Range at the north, es-
pecially in the central part; and ii) in the south-east mountainous part, corresponding
to the Iberian Range and the southern east region. The lowest values – from 40 to
800 MJ mm ha−1 h−1 y−1 – appeared in the north-west of the area and in the centre
of the Ebro River valley. The spatial distribution of the EI30 index was slightly differ-20

ent, showing a clear gradient from the north-west (Cantabric Sea) to the south-east
(Mediterranean Sea), modified to a certain extent by the relief. The highest values –
from 70 to 190 MJ mm ha−1 h−1 – were found in the south-east corner, along the coast.
Lower values – from 8 to 40 MJ mm ha−1 h−1 – are found close to the Cantabric Sea.
This pattern is similar to the distribution of the extreme rainfall events in the region (Be-25

gueŕıa et al., 2008), and is an indicator of the EI30 index being closely related to the
most intense rainfall events.
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The spatial distribution of both indices over the study area can be explained to a large
extent by the proximity to – or isolation from – the water masses (the Cantabrian and
Mediterranean seas). The relief, with mountain ranges to the north, south and east of
the region, modify this general pattern by increasing rainfall in those areas. Another
effect of the relief is the isolation of the central area from the main precipitation sources,5

i.e. creating a zone of rain shadow.
Despite the general spatial pattern, differences were evident between the models.

The maps produced by the local methods – IDW and Spline with tension – were very
much linked to individual observations, resulting excessively local. In most cases, local
variance can be associated with the occurrence of anomalous events or very specific10

conditions, and might not reflect the general pattern adequately. The maps produced
by these two methods varied slightly depending on the value of the r and psi param-
eters (maps not shown), but in all cases they had this characteristic. The smoothed
splines method, which includes a smoothing function to reduce excessive influence of
local observations, produced a more regularized output.15

Geostatistical methods (simple kriging, ordinary kriging with anisotropy and co-
kriging) produced much more smoothed results than the local methods, yet retaining
a good degree of detail. Differences between the three methods were few, although
an increasing degree of local detail was found from the simplest to the most complex
method. It can be noticed that simple kriging gave higher values for the centre of the20

valley, overestimating the model.
Regression produced the smoothest result, as a consequence of being a purely

global method. The independent variables selected by the stepwise procedure were
ELEV, MED and CANTAB for R and LON, LAT, MED and RAD for EI30 (Table 3). The
selection of variables was remarkably constant during the jacknife process, confirming25

the statistical significance of these variables. However the uncertainty of the predic-
tion is reflected by the relatively low determination coefficient (Table 3). For both R
and EI30 the location variables (distance to the sea and longitude) were the most in-
fluential, followed by the topographic variables (elevation and radiation), as shown by

431

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/6/417/2009/hessd-6-417-2009-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/6/417/2009/hessd-6-417-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
6, 417–453, 2009

Mapping rainfall
erosivity at a regional

scale

M. Angulo-Mart́ınez et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

the standardized coefficients (Table 4). The map resulting from the regression model
(Figs. 2 and 3) did not show as higher values as the other methods, especially at the
south-east of the study area where the maximum values of both R and EI30 were ob-
served. This fact can be explained by the use of a weighted regression model, which
underestimates the importance of outlier observations during the fitting process.5

The maps obtained by mixed methods (regression plus local interpolation of the
model residuals) had an increased degree of local detail, and corrected the underesti-
mation problem of the regression model alone. The maps produced by mixed methods
reflected better the local diversity than any other method alone, whereas maintaining
the general pattern. The high level of visual detail on these maps makes them more10

appealing to the viewer, what enhances communication.
Tables 5 and 6 summarize the statistics of the predicted variables and the valida-

tion parameters. All methods underestimated the variance of the R and EI30 indices,
resulting in relatively poor predictions. The observed standard deviation was 621.7
for the R factor, which varied in the range 40–4500 MJ mm ha−1 h−1 y−1, and 23.8 for15

EI30 , which varied in the range 8–190 MJ mm ha−1 h−1. Compared with that, the stan-
dard deviation of the estimations ranged between 228.4 and 420.4 for R and 8.7 and
16.2 for EI30 (Tables 5 and 6). Consequently, all models had relatively large absolute
errors, which were higher than 30% of the mean predicted value for most of them.
Similarly, the r2 and Willmott’s D values were relatively low. The low performance20

was mostly due to the inability to predict the highest values, especially those above
2000 MJ mm ha−1 h−1 y−1 for R and 100 MJ mm ha−1 h−1 for EI30 , respectively (Figs. 4
and 5). The large uncertainty of the predictions can be attributed to the high random
variability of both erosivity indices in the study area and during the study period. In
fact, during an initial inspection of the data set it was apparent that close observatories25

could have very different values of R and EI30 .
Differences between the models regarding the validation statistics were narrow, but

allowed for a comparison. The mixed methods offered the best results overall, from
their visual appearance and the validation results. Other models as ordinary kriging
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with anisotropy and IDW method with r=3 for the R factor were equally good according
to the r2, the Willmott’s D statistic and MBE, and also had one of the lowest MAE. For
the EI30 index, the regression model plus splines with tension interpolated residuals
had the highest r2 and also the lowest MBE. The Willmott’s D statistics favoured the
regression model plus IDW interpolated residuals, followed by the rest of the mixed5

models, ordinary kriging with anisotropy and splines with tension.

4 Discussion and conclusions

Rainfall erosivity is an indicator of the precipitation aggressiveness, and depends on
the rainfall energy (raindrop size distribution and kinetic energy) and the intensity of the
storm event. Rainfall under Mediterranean climate is characterized by high temporal10

variability and a flashy character. This last characteristic affects especially the rainfall
erosivity, which depends on the occurrence of few, very intense, events (González-
Hidalgo et al., 2007).

In this study we used the RUSLE R factor and the average EI30 index of the erosive
events to assess the spatial distribution of rainfall erosivity on the north-eastern Iberian15

Peninsula. Both variables are characterized by a high temporal variability, especially in
the Mediterranean area and in geographically complex regions (Leek and Olsen 2000;
González-Hidalgo et al., 2007). During the initial stage of the analysis it was evident
that close observatories could have very different values of R and EI30 . Nevertheless,
obtaining robust spatially continuous models of rainfall erosivity is interesting in itself,20

but also as a needed step for its integration into erosion models.
Comparing both erosivity indices, the average EI30 index of the erosive events had

larger variability than R, being more affected by the most extreme events. The spatial
pattern of EI30 showed a clear northwest-southeast gradient. The highest values were
found in the southern region, coinciding with the distribution of the peak intensity of25

extreme rainfall events for the same area (Begueŕıa et al., 2008). The spatial distri-
bution of the R factor showed the highest values in the north and the south-east part,
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isolating the centre of the valley with low values. Previous works have analyzed the
spatial distribution of the USLE R factor in Spain (ICONA, 1988). The value range and
the spatial distribution are similar to the results of our study. There are differences how-
ever in the south-east corner along the Mediterranean coastland. The map of ICONA
(1988) did not show the high erosivity values which were presented in our dataset. This5

discrepancy could be due to the different period of analysis, since the study of ICONA
(1988) was based on data from the period 1966–1976, although this issue could not be
assessed using the current dataset. Unfortunately, the technical brief attached to the
map of ICONA did not report enough details allowing for a deeper comparison. The
R factor values found for the area are similar to the ones published by other authors for10

the Mediterranean region: 697.4 to 3741.8 MJ mm ha−1 h−1 y−1 in Portugal (De Santos
Loureiro and De Azevedo Coutinho, 2001); 471 and 3214 MJ mm ha−1 h−1 y−1 in Italy
(Diodato, 2004); 339 to 818 MJ mm ha−1 h−1 y−1 in central Spain (Boellstorff and Ben-
ito, 2005); or 419.01 to 1124.36 MJ mm ha−1 h−1 y−1 in Sicily (Onori et al., 2006). We
are not aware of previous studies analyzing the spatial distribution of the average EI3015

index in the literature.
Despite the high spatial variability of both indices, the mapping methods tested were

able to capture the main spatial pattern of rainfall erosivity in the area. The spatial
distribution can be explained by seasonal atmospheric behaviour which causes the
major stormy events. In the Pyrenees these events are related with south western20

flows confronting the mountains triggering orographic rainfall in winter, and convective
storms in summer. Close to the Mediterranean Sea the heating contrast between the
atmosphere upper levels and continental and maritime surfaces, more intense during
fall, generates intense storms. This is the principal cause of heavy rainfalls in the
southeastern area (Llasat and Puigcerver, 1997). These synoptic situations explain the25

spatial pattern of rainfall erosivity, which is linked to the most extreme events of the year.
In addition, the strong relief adds complexity to the climate dynamics making more
complex to obtain reliable models. It is responsible of orographic precipitation increase,
and it also generates temperature differences in narrow spaces which contribute to the

434

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/6/417/2009/hessd-6-417-2009-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/6/417/2009/hessd-6-417-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
6, 417–453, 2009

Mapping rainfall
erosivity at a regional

scale

M. Angulo-Mart́ınez et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

formation of convective cellules and local storms. Thus, all rainfall erosivity maps show
a clear north-west to south-east gradient, and marked local differences caused by the
relief.

The comparison of several interpolation techniques yielded mixed results, since no
single method arouse as the best one according to all validation metrics. The Will-5

mott’s D statistic tended to favour the use of regression plus inverse distance weighting
residuals for both R and EI30 , although other methods such as ordinary kriging with
anisotropy or IDW also ranked well. This result coincides with the common assumption
that mixed methods (global regression plus local interpolation of the model residu-
als) are best for generating surfaces of climatic variables (Brown and Comrie, 2002;10

Vicente-Serrano et al., 2003; McBratney et al., 2003; Ninyerola et al., 2007; He et
al., 2007). Beyond the validation statistics, only regression-based techniques provide
a means of testing hypothesis about the influence of geographical variables on the vari-
able of interest. In our case, they allowed quantify the influence of the distance to the
coast and the elevation on rainfall erosivity, a fact that has been also described by other15

authors (Goovaerts, 1999; Van Dijk et al. 2002; Domı́nguez-Romero et al., 2007).
In general, the models were bad at predicting the highest values of both indices, due

to the presence of outlier observations. This problem affected the process of variable
selection in the regression models, and recommended the use of a robust regression
procedure which minimizes the importance of outlier observations in the fitting pro-20

cess. This in turn penalized regression-based models on the comparison, since most
validation statistics are highly influenced by misrepresentation of the most extreme
observations. The uncertainty of the predicted values can be explained by the natu-
ral climate variability in the study area, and also by the length of the analysis period.
Other authors have reported high variability of soil erosion values in the Mediterranean25

region, both in space and time (González-Hidalgo et al., 2007). With respect to the
length of the data series, it is generally accepted that a minimum of 20 years is desir-
able for rainfall erosivity analysis (Renard and Freimund, 1994; Renard et al., 1997;
Curse et al., 2006; Verstraeten et al., 2006). Unfortunately, there are very few data
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bases of high time resolution rainfall records and a good spatial coverage, as the one
used in this work. Regarding to this character, the maps obtained by the local methods
were the most influenced by the high variability of the erosivity indices, masking the
general spatial pattern. Longer series are needed for reducing the spatial noise.

The availability of high-quality environmental maps is a key issue for agricultural and5

hydrological management in many regions of the World. Rainfall erosivity maps can be
of high relevance as a guidance for soil conservation practices, and also because they
are usually part of erosion models such as the RUSLE. Recently, the RUSLE model
has been implemented into GIS packages, integrating all the factors as different layers.
Hence, the accuracy of the spatial surface of each factor is propagated to the outputs10

of the model. Compared to other climatic variables, rainfall erosivity is characterized by
a high spatial and inter-annual variability, what makes mapping more difficult. However,
we have found that reasonable results can be found by using several spatial interpo-
lation techniques. Between the several methodologies tested, we found that mixed
models (multiple regression plus local interpolation of the residuals) yielded the high-15

est level of spatial detail, and also ranked highest using several validation statistics.
The use of regression techniques allowed also assessing the statistical significance of
geographical variables influencing the distribution of rainfall erosivity. Validation of the
models showed that there is still uncertainty in the prediction of rainfall erosivity, which
can be attributed to the high spatial and temporal variability of this parameter and the20

importance of outlier observations in the data series.
Further research may be directed to find reliable erosivity indices which can be com-

puted from daily precipitation data. This would allow using daily precipitation data
bases, which are usually longer and have a higher spatial coverage. This would lead
to more robust results, and will also make trend analysis possible.25
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federation (Confederación Hidrográfica del Ebro – CHE) for providing the data used on
this study. This work has been supported by the research projects CGL2008-00831/BTE,
CGL2005-04508/BOS and CGL2008-01189/BTE, funded by the Spanish Ministry of Science

436

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/6/417/2009/hessd-6-417-2009-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/6/417/2009/hessd-6-417-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
6, 417–453, 2009

Mapping rainfall
erosivity at a regional

scale

M. Angulo-Mart́ınez et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

and Innovation. Research of M.A. is supported by a JAE-Predoc Research Grant from the
Spanish National Research Council (Consejo Superior de Investigaciones Cient́ıficas – CSIC).

References

Arnoldus, H. M. J.: Methodology used to determine the maximum potential average annual soil
loss due to sheet and rill erosion in Morocco, FAO Soils Bull., 34, 39–51. 1977.5
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Lasanta, T.: Gestión agŕıcola y erosión del suelo en la cuenca del Ebro: el estado de la

cuestión, Zubı́a, 21, 76–96, 2003.
Llasat, M. C.: An objective classification of rainfall events on the basis of their convective fea-

tures: Application to rainfall intensity in the northeast of Spain, Int. J. Climatol., 21, 1385–20

1400, 2001.
Llasat, M. C. and Puigcerver, M.: Meteorological factors associated with floods in the north-

eastern part of the Iberian Peninsula, Nat. Hazards, 5, 133–151, 1994.
Leek, R. and Olsen, P.: Modelling climatic erosivity as a factor for soil erosion in Denmark:

changes and temporal trends, Soil Use Manage., 16, 61–65, 2000.25

Lim, K. J., Sagong, M., Engel, B. A., Tang, Z., Choi, J., and Kim, K.: GIS-based sediment
assessment tool, Catena, 64, 61–80, 2005.
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Table 1. Regression model variables (explaining the process for each index).

Independent candidate variables Independent variables selected
for the regression model

R average EI30 average per event
(1997–2006) (1997–2006)

LON Longitude (m) X
LAT Latitude (m) X
MED Distance to Mediterranean Sea (m) X X
CANTAB Distance to Cantabrian Sea (m) X
RAD Incoming solar radiation (J d−1) X
RADx Incoming solar radiation within xj ,

where x is a radius of 2.5, 5 and 10 km
ELEV Elevation (m)
ELEVx Elevation within xj , X

where x is a radius of 2.5, 5 and 10 km

443

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/6/417/2009/hessd-6-417-2009-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/6/417/2009/hessd-6-417-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
6, 417–453, 2009

Mapping rainfall
erosivity at a regional

scale

M. Angulo-Mart́ınez et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Table 2. Computation of several goodness of fit statistics used on this study.

Statistical critera Definitions:

N: no of observations
O: observed value
Ō: mean of obs. values
P : predicted value
P ′
i =Pi−Ō
O′
i=Oi−Ō

Least-squares linear regression Slope
Intercept
r2=coefficient of determination

Mean bias error (MBE) MBE=N−1∑N
i=1(Pi−Oi )

Mean absolute error (MAE) MBE=N−1∑N
i=1 |Pi−Oi |

Willmontt’s D D=1−
∑N
i=1(Pi−Oi )

2∑N
i=1(|P ′

i |+|O
′
i |)2
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Table 3. Coeficients regression models and predict variables selected (EI30 and R).

r r2 Variables

R Factor 0.504 0.3406 MED,CANTAB, ELEV 10
EI30 Index 0.528 0.2933 LON, LAT, MED, RAD
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Table 4. Standardized coefficient of the regression model variables.

Variables Standardized Coefficient

R Factor
ELEV 10 0.3591
CANTAB −1.2172
MED −1.395

EI30 Index
MED −2.563
LON −1.622
LAT 1.034
RAD −0.172
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Table 5. Accuracy measurements for factor R models: mean and standard deviation of the
observed and predicted values, and cross-validations statistics.

Validation statistics
Mean Standard R2 Slope Intercept MBE MAE Willmott’s

deviation D

Observed 891.40 621.77

Predicted
Inverse Distance Weighting (r=1) 896.64 292.49 0.18 0.89 720.63 5.24 355.26 0.53
Inverse Distance Weighting (r=2) 891.75 346.59 0.18 0.77 678.51 0.35 356.33 0.58
Inverse Distance Weighting (r=3) 896.85 420.40 0.17 0.60 651.23 5.44 367.40 0.59
Smoothed splines [T (x, y)=400] 895.86 275.70 0.18 0.95 729.56 4.45 354.99 0.52
Splines with tension (ϕ=400) 896.74 268.30 0.16 0.92 744.38 5.33 357.45 0.50
Splines with tension (ϕ=5000) 890.21 324.54 0.20 0.85 684.19 −1.19 348.27 0.57
Simple kriging 901.06 274.77 0.19 1.18 758.61 9.66 362.25 0.49
Ordinary kriging 882.00 228.44 0.19 0.99 710.16 −9.40 347.83 0.54
Ordinary kriging with anisotropy 891.31 287.85 0.22 1.01 699.25 −0.09 349.18 0.56
Co-kriging 882.06 277.70 0.19 0.98 707.75 −9.34 347.77 0.54
Regression 809.94 268.26 0.15 0.89 662.28 −81.46 352.15 0.50
Regression model+residuals 890.77 381.76 0.19 0.71 652.96 −0.63 356.61 0.59
(inverse distance, r=2)
Regression model+residuals 889.87 331.54 0.17 0.78 692.95 −1.53 360.34 0.55
(spline with tension, ϕ=400)
Regression model+residuals 881.08 323.62 0.17 0.79 689.13 −10.32 359.6 0.55
(ordinary kriging)
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Table 6. Accuracy measurements for index EI30 models: mean and standard deviation of the
observed and predicted values, and cross-validations statistics.

Validation statistics
Model Mean Standard R2 Slope Intercept MBE MAE Willmott’s

deviation D

Observed 44.32 25.85

Predicted
Inverse Distance Weighting (r=1) 44.23 12.17 0.21 0.97 34.68 −0.10 14.60 0.56
Inverse Distance Weighting (r=2) 43.69 13.40 0.21 0.87 33.27 −0.64 14.62 0.58
Inverse Distance Weighting (r=3) 43.82 16.22 0.17 0.65 32.41 −0.50 15.17 0.58
Smoothed splines [T (x, y)=400] 44.44 12.05 0.22 1.00 34.80 0.12 14.58 0.57
Splines with tension (ϕ=400) 44.48 11.68 0.21 1.01 35.33 0.16 14.62 0.55
Splines with tension (ϕ=5000) 44.11 13.40 0.23 0.93 33.01 −0.21 14.28 0.60
Simple kriging 44.47 12.05 0.19 1.30 37.86 0.15 15.20 0.47
Ordinary kriging 44.02 8.75 0.22 1.00 34.39 −0.30 14.64 0.57
Ordinary kriging with anisotropy 44.34 13.07 0.23 0.95 33.52 0.02 14.28 0.60
Co-kriging 44.09 12.66 0.22 0.96 33.91 −0.23 14.52 0.58
Regression 40.86 9.54 0.23 1.30 33.02 −3.46 13.73 0.50
Regression model+residuals 43.95 14.47 0.22 0.85 32.20 −0.37 14.60 0.61
(inverse distance, r=2)
Regression model+residuals 44.32 13.39 0.24 0.94 33.15 −0.001 14.65 0.60
(spline with tension, ϕ=400)
Regression model+residuals 44.26 13.42 0.23 0.92 33.29 −0.06 14.91 0.60
(Ordinary kriging)

448

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/6/417/2009/hessd-6-417-2009-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/6/417/2009/hessd-6-417-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
6, 417–453, 2009

Mapping rainfall
erosivity at a regional

scale

M. Angulo-Mart́ınez et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Fig. 1. Location of the study area and the observatories used on this study.
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Fig. 2. Rainfall erosivity maps (RUSLE R factor) for the Ebro Basin: (a) Inverse Distance
Weighting surface; (b) Spline with tension (ϕ=5000); (c) Smoothing spline (ϕ=400); (d)
Simple kriging; (e) Ordinary kriging with anisotropy; (f) Co-Kriging; (g) Regression model;
(h) Regression model+residuals interpolated by Spline with tension (ϕ=400); (i) Regression
model+residuals interpolated by ordinary kriging.
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Fig. 3. Rainfall erosivity maps (average EI30 index of the erosive events) for the Ebro Basin:
(a) Inverse Distance Weighting surface; (b) Spline with tension (ϕ=5000); (c) Smoothing spline
(ϕ=400); (d) Simple kriging; (e) Ordinary kriging with anisotropy; (f) Co-Kriging; (g) Regression
model; (h) Regression model+residuals interpolated by Spline with tension (ϕ=400); (i) Re-
gression model+residuals interpolated by ordinary kriging.
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Figure 4. Goodness of fit plots for the R factor: predicted vs. observed values, perfect fit line and regression line 

(dashed). 
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Fig. 4. Goodness of fit plots for the R factor: predicted vs. observed values, perfect fit line and
regression line (dashed).
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Figure 5. Goodness of fit plots for the EI30 factor: predicted vs. observed values, perfect fit line and regression 

line (dashed). 
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Fig. 5. Goodness of fit plots for the EI30 factor: predicted vs. observed values, perfect fit line
and regression line (dashed).
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